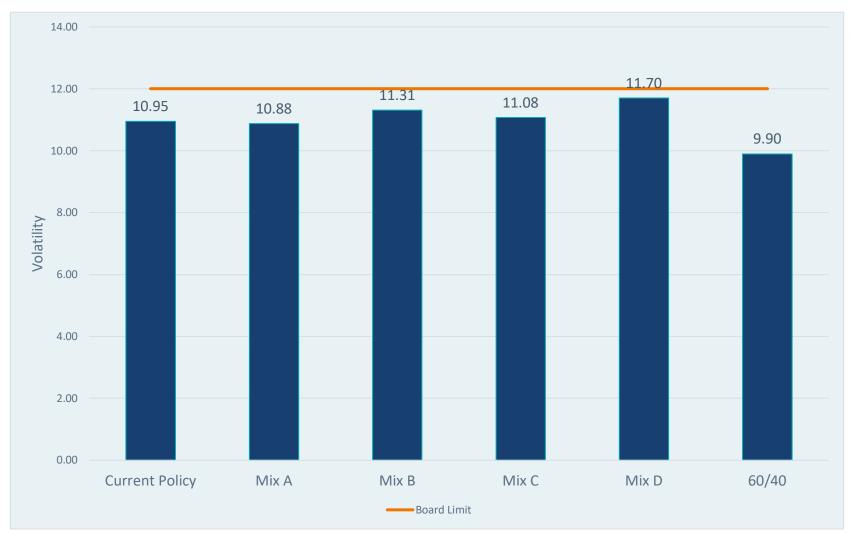
Verus⁷⁷⁷

MARCH 3, 2022

Risk Allocation Study

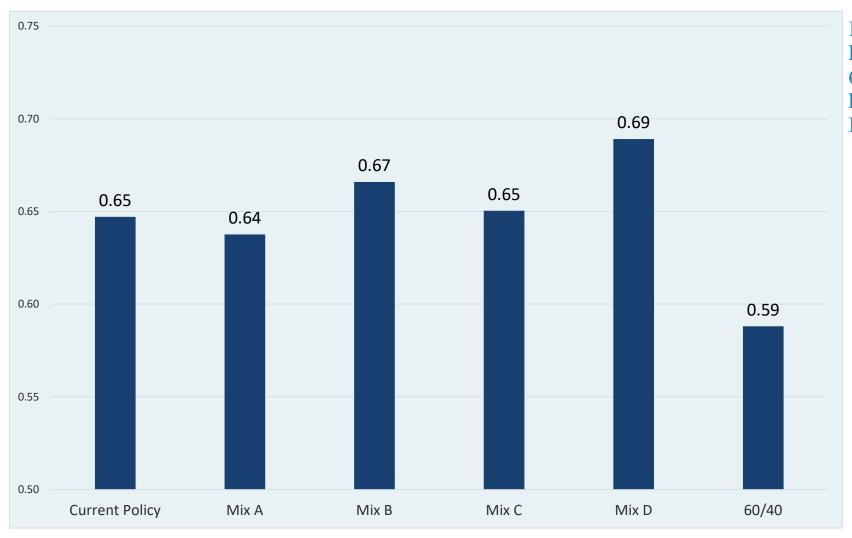

City of San Jose Police and Fire Employees' Retirement System

Summary

Analyzing the mixes being considered, we observe:

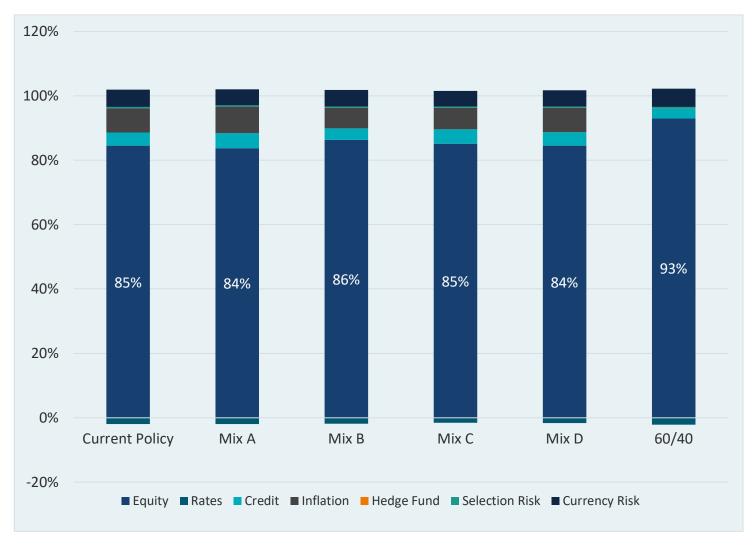
- The proposed asset allocation changes are minor (1-3%) across asset classes
- All the mixes fall below the board limit for portfolio volatility as defined in IPS
- The mixes provide similar levels of equity market sensitivity (beta)
- Similar risk allocation profiles, with equity factors largely driving overall portfolio risk
- Duration risk is not significant risk among mixes considered as it is relatively short across all mixes
- If the fed struggles with the timing of rate rises and tapering asset purchases, we could see the portfolio decline more than 10%
- We observe similar performance across asset mixes in most historic scenarios and stress tests

Risk operating zones

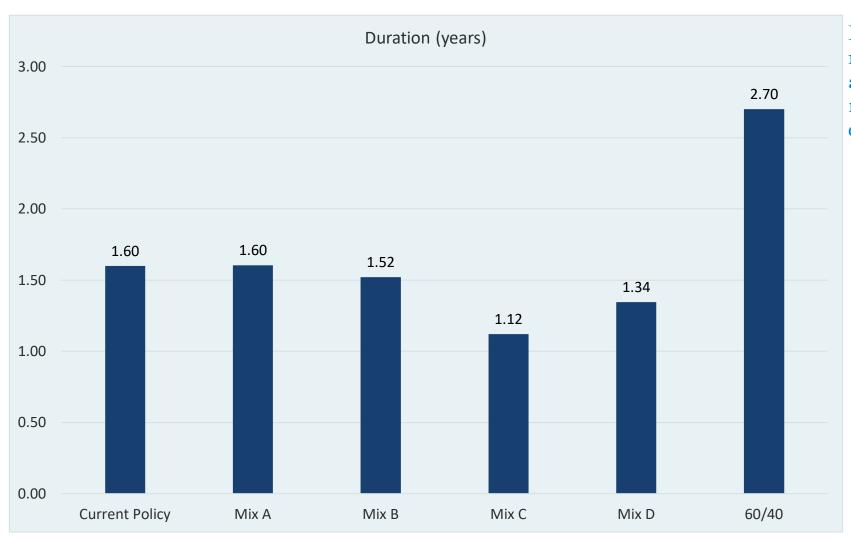


All mixes fall below the board limit for portfolio volatility

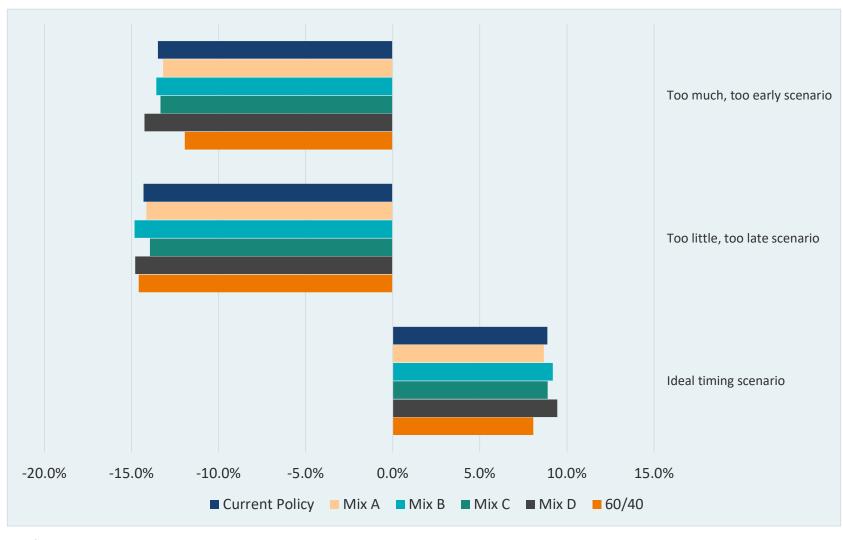
Operating zones are defined in appendix C of the Investment Policy Statement. Forecasted volatility using Barra's MAC.XL model.


Equity beta

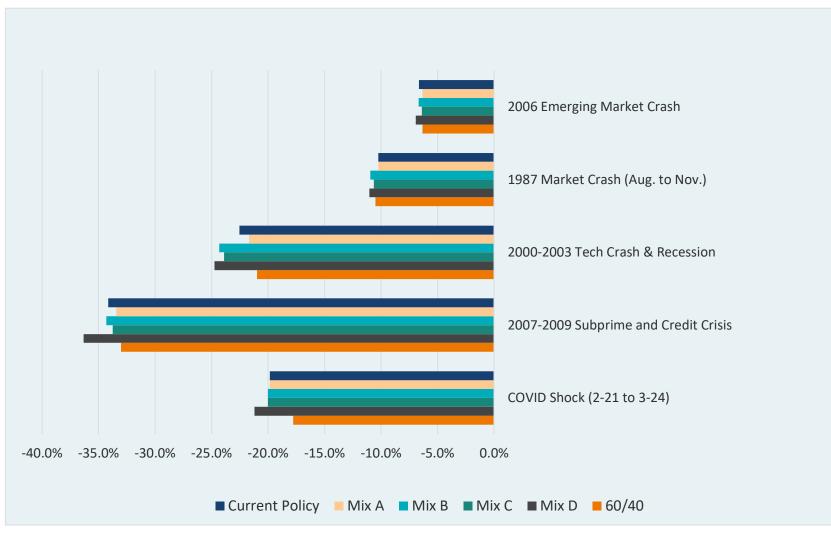
Equity beta is lowest for the 60/40 mix and highest for Mix D.


Risk decomposition

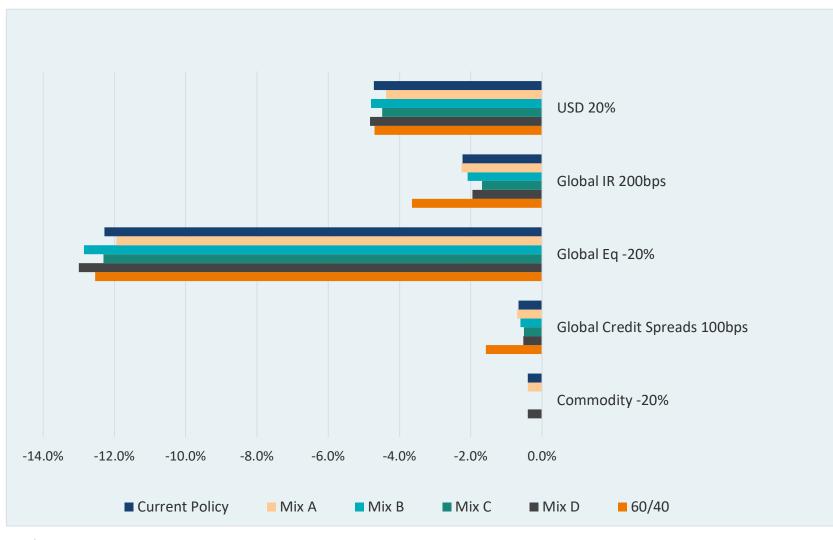
Equity factor risk remains the largest contributor to volatility across all the mixes considered. We see marginal differences in credit, inflation, and currency factors.


Effective duration

Duration risk remains low across all the mixes considered.


Fed rate hike scenarios

If the fed can successfully navigate the timing of raising rates and tapering asset purchases, we could experience positive returns.


Historic scenario analysis

We observe similar performance in historic scenarios with Mix D performing the worst.

Stress tests

Of the stress tests considered, global equities falling 20% is the most severe, followed by the U.S. Dollar appreciating 20%.

Appendix

Rate hike scenarios

Ideal timing: Markets perceive that the Fed tapers asset purchases and hikes rates at the right time to keep inflation controlled while helping economic growth remain stable and robust. Investors are confident, equities gain, and long-term rates increase slightly. Emerging markets benefit from strong U.S. growth.

Too much, too early: Markets believe that policy actions occur too early and are overaggressive. Short- and long-term economic growth are negatively impacted, and market-implied inflation expectations drop. Equities fall, the yield curve flattens and the slowdown in the U.S. growth hurts emerging markets.

Too little, too late: Markets perceive that the policy path is too slow, which brings inflation worries to the forefront. While short-term growth is steady, long-term forecasts are hit. Higher inflation and a diminished growth outlook increase equity risk premia. Equities decline, while long-term interest rates pick up, resulting in a positive bondequity correlation.

Scenario	Ideal Timing	Too Much, Too Early	Too Little, Too Late
BEI-Rate Shocks (basis points)	Two-year: -15	Two-year: -85	Two-year: +165
	10-year: +5	10-year: -65	10-year: +115
Treasury-rate Shocks (basis points)	Two-year: +30	Two-year: +30	Two-year: +30
	10-year: +20	10-year: -40	10-year: +160
US Credit-Spread Shocks (basis points)	Investment Grade: -15	Investment Grade: +40	Investment Grade: +45
	High Yield: -40	High Yield: +150	High Yield: +190
US Equity Return (nominal)	13%	-17%	-18%
EM Equity Return (nominal, in local currency)	20%	-25%	-23%
EUR/USD Shocks	0%	-7%	10%

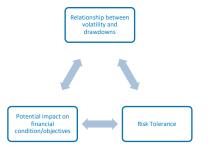
Source: MSCI

Appendix – Asset mixes

	P&F Current (%)	Mix A (%)	Mix B (%)	Mix C (%)	Mix D (%)	60-40 (%)
Growth	69	69	71	71	74	60
US Equity	25	22	25	24	25	0
Dev. Market Equity (non-US)	12	12	12	11	12	0
Emerging Market Equity	9	7	9	7	9	0
Global Equity	0	0	0	0	0	60
Buyouts	7	9	7	9	9	0
Venture Capital	3	4	4	4	4	0
Private Debt	3	4	5	4	4	0
Private Real Estate	3	4	4	4	4	0
Private Real Assets	3	3	3	4	3	0
Emerging Market Bonds	2	2	2	2	2	0
High Yield Bonds	2	2	0	2	2	0
Low Beta	8	8	8	16	8	0
Absolute Return	3	3	3	3	3	0
Cash Equivalents (Immunized CFs)	5	5	5	13	5	0
Other	23	23	21	13	18	40
Core Real Estate	5	5	5	5	5	0
Commodities	2	2	0	0	2	0
TIPS	2	2	2	2	2	0
Investment Grade Bonds	11	11	11	4.5	6	40
Long-term Govt Bonds	3	3	3	1.5	3	0

Determining risk limits

Relationship between volatility and drawdowns


The board has used the following framework to determine the appropriate level of portfolio volatility

Potential impact on financial condition/objectives

Risk Tolerance

Volatility, drawdowns and risk tolerance

D . (C !! .) / . !!!!	050/1/ 5	050/ 01/ 5	000/1/ 5		Average 3 worst
Portfolio Volatility	95% VaR	95% CVaR	99% VaR	99% CVaR	scenarios
8% Risk	-14	% -17%	-18%	-20%	-19%
9% Risk	-15	% -18%	-19%	-22%	-21%
10% Risk	-16	% -19%	6 -21%	-24%	-23%
11% Risk	-18	% -22%	6 -24%	-27%	-28%
12% Risk	-20	% -25%	6 -27%	-31%	-32%
13% Risk	-22	% -28%	-30%	-34%	-36%
14% Risk	-24	% -29%	-31%	-36%	-39%
15% Risk	-25	% -31%	6 -33%	-38%	-40%

The board's risk tolerance determines the appropriate level of risk and how expected drawdowns will be estimated

Actuarial projections

Relationship between volatility and drawdowns Potential impact on financial condition/objectives Risk Tolerance

Potential impact on financial condition/objectives

Based on discussions with Verus and Cheiron the board determined there were three actuarial metrics to include in the formulation of their risk limits: Funded Ratio, City Contributions, and Interest cost. Applying drawdowns in 5% increments ranging from 20% to 40%, we can determine the impact on the three metrics.

							Funded	City		Inte	rest
			City	y	Inte	erest	Ratio	Contril	outions	Cost	t
		Funded Ratio	Cor	ntributions	Cos	t	change	change	9	Cha	nge
_	Baseline	74%	\$	225	\$	75	0%	\$	-	\$	-
Year	-20%	63%	\$	341	\$	125	-11%	\$	116	\$	50
	-25%	60%	\$	362	\$	135	-14%	\$	137	\$	60
Single	-30%	57%	\$	382	\$	146	-17%	\$	157	\$	71
iž	-35%	54%	\$	402	\$	156	-21%	\$	177	\$	81
0)	-40%	49%	\$	422	\$	166	-25%	\$	197	\$	91

The Single Year table identifies the maximum or minimum for each category.

							Funded	City		Inte	erest
		City		Interest		Ratio	ntio Contributions		Cost		
		Funded Ratio	Con	tributions	Со	st	change	char	nge	Cha	ange
e	Baseline	89%	\$	2,130	\$	597	0%	\$	-	\$	-
	-20%	75%	\$	2,815	\$	1,087	-14%	\$	685	\$	490
-yea ulat	-25%	73%	\$	2,961	\$	1,169	-16%	\$	831	\$	571
10-year ımulativ	-30%	71%	\$	3,107	\$	1,250	-18%	\$	978	\$	653
	-35%	69%	\$	3,261	\$	1,329	-20%	\$	1,131	\$	732
ي	-40%	67%	\$	3,415	\$	1,408	-22%	\$	1,285	\$	810

The 10-year Cumulative table identifies the end of period financial situation and total dollar amount for each category

Source: Actuarial metrics provided by Cheiron. Dollar amounts in millions

Appendix - Downside measures

We have discussed three methods of determining downside risk (or tail risk) for the investment portfolio.

<u>Value at risk (VaR)</u>: VaR calculates the maximum loss expected over a 1-year period given a specified degree of confidence

<u>Conditional Value at Risk (CVaR)</u>: CVaR measures the expected loss if VaR is exceeded. It takes the average of the tail observations

Average of three worst historical scenarios: We simulate the portfolio through historic scenarios to determine the three worst periods and take the average of those scenarios.

Risk Metric	Description
95% VaR	(95% Confidence) We don't expect the worst annual loss to exceed
99% VaR	(99% Confidence) we don't expect the worst annual loss to exceed
95% CVaR	(95% Confidence) If VaR is exceeded, the average expected loss
99% CVaR	(99% Confidence) If VaR is exceeded, the average expected loss
Avg. Scenario Drawdown	The average of the three worst historic scenarios measured in BarraOne

There are three methods to calculate VaR: Historic, Parametric, and Monte Carlo. VaR calculations are conducted in BarraOne using Monte Carlo VaR.

